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S P O N T A N E O U S  S W I R L I N G  IN A X I S Y M M E T R I C  F L O W S  

OF A C O N D U C T I N G  F L U I D  IN A M A G N E T I C  F I E L D  

B. A. Lugovtsov UDC 532.516 + 538.4 

The problem of spontaneous swirling was considered in [1-7] and is as follows: can rotary motion occur 
in the absence of external source of rotation, i.e., under conditions where motion without rotation is realizable? 

A more rigorous formulation of this problem was given by Lugovtsov [7]. The proposed formulation 
ensures a close control of the kinematical flux of the axial component of the angular momentum, which 
eliminates inflow of the rotating fluid in the flow region. 

The occurrence of rotary motion is regarded as a bifurcation of the initial axisymmetric flow due to 
the loss of stability against swirling flow (not necessarily rotationally symmetric). 

At present, examples of the occurrence of spontaneous swirling [1-3], including swirling in MHD flow 
[5, 6], have been given. However, as was shown in [4, 7], the available examples do not satisfy the more rigorous 
requirements formulated in [7]. Thus, the question of the possibility of spontaneous swirling remains open. 

The proof that spontaneous swirling is impossible, if this statement is valid, involves significant 
difficulties and can hardly be obtained in a fairly general form. To prove the existence of this phenomenon, it 
is sufficient to find at least one example. To narrow the region of search for such an example, it is of interest 
to consider transition of axisymmetric to rotationally symmetric flow or a plane analog of this transition, i.e., 
the occurrence of a spontaneous cross (normal) flow which is independent of the transverse coordinate in the 
case of an initial plane-parallel flow [7]. 

Lugovtsov [7] showed that the bifurcation axisymmetric flow-rotationally symmetric flow (and the 
corresponding plane analog of this transition) does not take place for a compressible fluid with a variable 
viscosity coefficient. In the case of the plane analog, this statement is also valid for a conductive fluid moving 
in the presence of a magnetic field, irrespective of the character of connectedness of the flow region. 

Such a general result is difficult to obtain for axisymmetric flows in the presence of a magnetic field. 
In this case, as was noted by Lugovtsov and Gubarev [7], swirling flows can occur which are maintained by 
electromagnetic forces, and the formulation of the problem of spontaneous swirling requires refinement. 

Below, we consider axisymmetric flow of an incompressible conductive fluid. It will be shown that 
axisymmetric spontaneous swirling is impossible if the meridional section of the flow region is simply 
connected. 

The equations describing such flows have the following form in conventional notation: 

0Zv 1 
Ot + ( v V ) v = - l V p + u A v - - ( H x r ~  H ) + f ,  d i v v = 0 ;  (1) 

p 41rp 

r o t E -  1 0 H  47rcr [ 1 )] 
c Or' r o t H =  c E + - c ( V X H  ; 

d ivE=4r rpe ,  d i v H = 0 .  

H'ere f = 
0, w(r, z,t)).  

(2) 

(3) 

(fr(r,  z,t),O, fz(r, z,t)) are forces that maintain the initial axisymmetric flow; v = (u(r,z, t) ,  
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Using the scalar ~ and vector A electromagnetic potentials, we write Eqs. (2) and (3) as 

1 0A 
H = r o t A ,  E =  Vr d i v A = 0 ;  (4) 

c 0t 

0A c 2 
- v x H = - v m r o t H - c V r  Vm= ; (5) 

Ot 4ra 

AO = -4rpe .  (6) 

For the azimuthal component of the vector potential A~, taking into account axial symmetry, from (5) 
we obtain 

o a~ u O w O a~ [ (91  ~r  02 A~ ] 
Ot +-r-~r  (rA~) + ~ = vm f f r r  (rA~) +--0-~z2 j. (7) 

For the poloidal components of the magnetic field Hr and Hz, we have 

OA~ 1 0 
H~ = Oz Hz - (rA~). (8) 

' T (gr  

We introduce the "magnetic stream function" ~ in place of A~, and assuming that k0 = rA~/(47rp)I/2, 
according to (8), we have 

h r -  

From (7), for @ we obtain 

form 

1 0g/ 1 0~ H 
hz - h - (9) 

r Oz' r Or' (47rp)l/2" 

0~ 0~ 0~0 (02~ 
at + ~'-~ + ~-5-;  = ~ ~-~ ~ 

The equations for the azimuthal components of velocity v~ 

1 OO 0 2 ~  (10) 
Or + -~z2]" 
= v and of magnetic field h~ = h have the 

o-i + u ~ + W Tiz = "~,-5-~ ~ ~ oF + Oz~ ] - -; _ ~  o~ a~ Y;z_' 
(11) 

(97 (97 0"7_ 2u /'057 I (97 (927' ~ I ( 0 *  OF 0k9 OF" / 2P 0*  
o-- i+u~ +w Oz - - ~  = ~ m ~ , b - ~ ~  r or + b-~Zz~]- ; ~ or or b S z j + 7  Oz' 

(12) 

where F = rv and 7 = rh. 
Thus, system (10)-(12), taking into account relations (9), describes the behavior of the magnetic field 

and the azimuthal velocity component. The poloidal velocity components u(r, z, t) and w(r, z, t) satisfy the 
condition of incompressibility div v = 0 and do not have singularities in the flow region (the radial velocity 
component on the axis of symmetry vanishes if the axis of symmetry belongs to the flow region). Otherwise 
the poloidal velocity components are arbitrary. 

In what follows, it is assumed that the boundaries (walls) of the axisymmetric region are impenetrable 
and superconducting, so that on the boundary (on the boundaries, if the meridional section is not simply 
connected) the nonpenetration condition vn = 0 and the condition hn = 0 are satisfied. In addition, it is 
necessary to satisfy the condition of vanishing of the tangent to the walls of the electric-field component. From 
(8) follows 

O H_._.~ _ 
cEr = --Vm OZ vHz + wH~; (13) 

(o~r oMz) 
cE~ = --Vm\ (gZ Or -- writ  + uHz; (14) 

CEz - v_~ (9 (rH~) - uH~ + wHr. (15) 
r ar 
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Equality of the tangential component of E to zero is ensured by the conditions 

E r n z - E z n r = O ,  E ~ = 0 ,  (16) 

where n = (nr, 0, nz) is the inner unit normal to the boundary of the flow region. 
Taking into account vn  = 0 and H n  = 0, from (13)-(16) we obtain 

O 
On + H~, nr (rHv) = O; (17) - - - 7 -  

ogr og. 1(02  
Oz 0---~- -- r \ ~ r  2 r 0----~ + -O-'~-z 2 ] = 0. (18) 

It follows from the condition h n  = 0 and Eqs. (10) and (18) that @ takes constant values on the boundaries. 
In the general case, these values are different on different boundaries for a multiply connected region. If this 
region is simply connected, one can set ~ = 0 on the boundary without loss of generality. 

Thus, solutions of system (10)-(12) should satisfy the following boundary conditions on boundary l 
(boundaries) of the flow region: 

= const, 07/On = 0. (19) 

The following conditions should be satisfied for F: the condition of at tachment F = 0 on a part (parts) of 
boundary l ' ,  and the condition of the absence of tangential stresses [7] on the other part (parts) l": 

0F 2F 
= n r = 0  on l"  (20) F 0 on l', On r 

If the axis of symmetry  (the z axis) belongs to the flow region, we have ~ = F = 3' = 0 on this axis, and 
~ F ~ 7 _ ~ r  2. 

We consider the case of a simply connected flow region. Let ~, F, and ~/for t -- O. Multiplying (I0) by 
rkI/, we have 

Ot 2 -~r ug12 + -~z ugt2 

_ r , " o ~  0~  0 0~  0 1 ~2 _ r + (21) 
= v~ r ~ - ~ r § 1 7 6  Oz Or 2 L\-~r/ -~z " 

Integrating (21) over meridional section D and taking (19) into account, we obtain 

D 1 I 

frr(o, 2 (o  21 + U,n / rgl On um + drdz. (22) 
I D 

Taking into account the boundary condition �9 : 0 on boundary l, from (22) we find that 

D D 

and, hence, k9 ~ 0 for t ~ oc if urn ~ O, i.e., the fluid has finite conductivity. By virtue of this, for sufficiently 
large t, the second term on the right side of the equation for F (11) becomes negligibly small, and, according 
t6 [7], F ~ 0 if a t tachment conditions (20) are fulfilled on an infinitesimal but finite part of boundary l'. 
Consequently, axisymmetric spontaneous swirling in the flow region with a simply connected meridional 
section is impossible. 

The behavior of the azimuthal component of the magnetic field for fairly large t is governed by Eq. (12), 
in which terms containing @ and F are omitted. This equation is written as 

Oh 0 " [0 (Oh h ) 0 2 h ]  (24) 
O---[ + -~r U h + ~z w h = u m "~r -~r § + 0 z 2 J "  
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Integrating (24) over the section D, we have 

D t l 

Let the axis of symmetry  be contained in the flow region and, hence, be part of the boundary of region 
D. By virtue of the boundary conditions, the right side is equal to zero everywhere on the boundary, except 
in the region coinciding with the axis of symmetry, in which the second term in (25) is different from zero. 
If the values of h are positive (negative) everywhere inside region D, the right side of (25) is nonpositive 
(nonnegative), since Oh/On ~ 0 and nr < 0 on the axis and h decreases. If h changes sign in region D, there 
is a curve h = 0 with a t ime-dependent location inside region D. In this case, integration is performed over 
subregion D t, in which the values of h are positive (negative). By virtue of the fact that on the additional 
boundary h vanishes, for subregion D t we obtain an equality similar to (25), from which follows the conclusion 
that the magnetic field decreases in this subregion, and, hence, over the entire region. 

If the flow region does not include the axis of symmetry, i.e., it is toroidal, by virtue of the boundary 
conditions, from (25) follows the well-known law of conservation of an azimuthal magnetic field flux over 
section D. Proceeding as above, one can see that in this case h ~ 0 as t ---* cx~ if the flux was initially equal to 
zero. If the initial flux is different from zero, h does not vanish, and the evolution of the azimuthal component 
of the magnetic field is determined by the poloidal velocity components u and w. 

Thus, axisymmetric spontaneous swirling is impossible if the meridional section of the flow region is 
simply connected. 

We now consider the case of a multiply connected section D, where one or several toroidal 
superconducting bodies are located inside the main flow region so that the axial symmetry is conserved. The 
constants k0i can take different values on the inner boundaries li. If all q2i are equal to zero, the conclusion 
that axisymmetric spontaneous swirling is impossible remains valid for the multiply connected section, since 
the poloidal magnetic field vanishes as for a simply connected section. 

If @i are different from zero (at least, on the inner boundary), the poloidal magnetic field does not 
disappear. If, in this case, h ~ 0 (7 ~ const), the electromagnetic forces, according to Eq. (11), necessarily 
generate a certain swirling flow (F ~ 0). As was mentioned above, the case h ~ 0 takes place if the main flow 
region does not include the axis of symmetry (is toroidal) and the azimuthal flow is different from zero. In 
the problem considered, such flows are not interesting and should be eliminated. 

Let there be an axisymmetric flow with F = 0 and h = 0 or h = 70/r. The second case is possible 
if the fluid in a cavity is at rest. For t = 0, the perturbation F ~ 0 and h = 0 is assumed. If, then, F ~ 0 
for t ~ oc, spontaneous swirling is impossible. In this formulation the question of spontaneous swirling for a 
multiply connected flow remains open. For an unbounded flow region, simple connectedness does not suggest 
the disappearance of the poloidal magnetic-field components if one does not require that they should vanish 
at infinity. As an example of an MHD flow of this type, we consider a Burgers vortex and its plane analog in 
a conductive incompressible viscous fluid. 

We consider first the plane analog. Equations (1)-(3) have solutions of the form 

u = ax, v = - a y ,  w = w ( t , x , y ) ,  h~ = bx, hy = - b y ,  

hz = h ( t , x , y ) ,  P = Po - (1/2)pa2(x 2 + y 2 )  _ (1/2)ph 2, 

the transverse velocity and magnetic-field components w and h where a and b are positive constants, and 
satisfy the system 

Let . = L'm 

Ow Ow Ow Oh Oh 
O---t + ax ~ - ay -~y = bx -~x - by ~y  + yAw;  (26) 

Oh Oh Oh Ow Ow 
0--7 + ax ~x  - ay ~y  = bx ~ x  - by -~y + vmAh.  (27) 

= O, w = w(t ,  y),  and h = h(t,  y). Then, the general solution of system (26) and (27) has 
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the form 

w = f ( y e  (a-b)t) + ~l(ye(~+b)t); 

h = f ( y e  (a-b)t) - qt(ye (a+b)t) 

(28) 

(29) 

where f and q/are  arbitrary functions. 
We consider the field momenta  w and h. Directly from solutions (28) and (29) or from Eqs. (26) and 

(27) we find that the quantities 
OO OO 

A. = f y"wdy, B. = f y"hdy 
- - 0 0  - - 0 0  

satisfy the equations 

d A / d t  = (n + 1)(bB - aA),  d B / d t  = (n + 1)(bA - aB) .  

Taking into account that  A ,  = Aon and B,, = 0 for t = 0, from (30) we obtain 

A ,  = Aoae-(n+Datcosh(n + 1)bt, B ,  = Aone-(n+1)atsinh(n + 1)bt. 

(30) 

(31) 

Similarly we find the energy 

~ =  f ( l w 2 + l h 2 ) d y = s o  e-atcOshbt. 

- - 0 0  

This means that all An,  Bn,  and e, including the transverse momentum A0, increase with time if b > a 
for n /> 0. Relations (31) remain valid for A0 and B0 and for a viscous fluid with finite conductivity, and, 
hence, the transverse momentum also increases with time for a viscous fluid with finite conductivity. In this 
formulation, however, if b > a, the transverse momentum increases on account of the transverse-momentum 
flux IIrz = -hzh~: = - b x h ,  which is related to the Maxwell stress tensor of a magnetic field that flows 
from infinity along the x axis to the plane x = 0. Therefore, the flow considered is not an example of the 
spontaneous occurrence of transverse flow. 

Note also that,  although the quantities A0 and B0 increase with time, the quantities w and h tend to 
zero as t ~ cx). This is shown as follows. The functions w and h are represented as the sum of the even and 
uneven terms, so that 

w = Wl + w2, h = hi + h2, wl(-y) = - w l ( y ) ,  w2(-y) = w2(y), 

hl(-y) = -hi(y), h2(-~)= h2(y). 

Assuming that wl = yfl and hi -- yw for fl and w, we have 

0 0 v 02 
~ - a ~ (yn) = - b ~  (yw) + ~ ~ (yn); (32) 

0 0 v,. 02 
wt - a -~uy (yw) = - b  -~y (y~)  + ~y --Oy 2 (yw). (33) 

Multiplying (32) by yfl and (33) by yw and integrating with respect to y, we obtain 

71 --:: J - y ( ~ 2  + w 2 ) d y  = oo cOw 2 oo l o f t ,  2 v _Vmw2(0) .  

0 0 0 

For even constituents, we set p = COw2/COy and q = COh2/COy. The equations for p and q have the form 

cO cO (35) Pt -- a ~y (yp) = - b  -~y (yq) + vpyy; 

cO 0 (36) qt -- a ~y (yq) = - b  ~y (yp) + Vmqyy. 
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Multiplying (35) by yp and (36) by yq and taking into account that  p = q = 0 for y = 0, by virtue of the 
evenness of w2 and h2, we obtain 

d ~ i  ~ ( )2 ~ ( ) Op Oq 2 
d~ -2 Y(p2 + q2)dy = - u  y -~y dy - u,.,, y -~y dy. (37) 

0 0 0 

From (34) and (37) it follows that  w ~ 0 as t ~ oo. 
For t = 0, we now specify w = wo(x, y) and h = h0(z, y), which vanish at infinity. Then, multiplying 

Eq. (26) by w and Eq. (27) by h, we obtain 

d ~ 1 7 6  r [(aw'~ a O w 2  dxdy //~176 [\-O--s (~_~) 2 

OO r 

The transverse m o m e n t u m  f f  w dz dy and the magnetic-field flux f f  h dx dy are conserved. Thus, it 
--OO --CO 

follows from (38) that  spontaneous transverse flow does not arise in this case. 
We now consider a magnetohydrodynamic analog of the Burgers vortex. System (1)-(3) has solutions 

of the form 

u = --ar, w = 2az, hr = -br, hz = 2bz; (39) 

1 OF _ a2 r _ hhr + 1 (v 2 _ h2), 1 0 P  _ _4a2 z _ hhz, (40) 
p Or r p Oz 

where a and b are positive constants, and Eqs. (40) are integrable only on the condition that  the azimuthal 
velocity v~, = v(r, t) and magnetic-field h~ = h(r, t) components are independent of z. According to this, 
v and h satisfy the equations 

Ov 
Ot 

Oh 

Ov Oh f O2v 10v v 
- -  - a r  -~r - av  = - b r  -~r - bh T v k ~ r  2 + r Or -rff ) 

Oh Ov (02h 1 Oh h ) 
Ot ar ~ r  + ah = - b r  ~ r  + bv + um \ ~r2  + r Or ~2 

We consider at first the case of a nonviscous, ideally conducting fluid (u = 0 and u,n 
a perturbation v = vo(r) and h = 0 be introduced such that  the quantity 

o o  

] Ivo(x)ldx, x = ln(r/r0)  (r0 = const) 
--CO 

M o  = 

has a finite value. 
The solution of system (41) 

Here 

and (42) subject to this initial condition is writ ten as 

a 

/ A(k)eik(x+'t)(c~ sinA(k)t)dk; 
- - 0 0  

y b(1 - ik) 
h =  - ~  A(k)eik(=+=t)sinA(k)tdk. 

- -  r20 

A(k) : (b 2 - a 2 -t- b2/r 

For the field momen ta  v and h we have 
O0 

An(t) = f rnvdr, 
o 

oo  
1 A(k) = G  / v~ 

--OO 

Bn(t) = f rnhdr. 
o 

(41) 

(42) 

= 0). Let for t = 0 

(43) 

(44) 

(45) 
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Multiplying (41) and (42) by r n and integrating for v = Urn = 0, we obtain 

d a . / d t  + n a a .  = nbB., dB./dt  + (n + 2)aB. = (n + 2)ba.. 

Taking into account that  An(0) = Ano and B.(0) = 0 for t = 0, from (46) we find that 

( --a sinh#at);  A,  = A,oe -(n+Dat cosh#,t  + gn 

B,  - (n + 2)b A,,oe_(,+U.tsinh#,t, 
#n 

where 

(46) 

(47) 

(4s) 

# ,  = (a 2 + n(n + 2)b2) 1/2. (49) 

From the solution of system (43) and (44), it follows that for a > b (a weak poloidal field) the azimuthal 
velocity component v increases infinitely, but all the momenta A,  ---* 0 if n /> 0. In the case of n = - 1  (a > b), 
we have 

a 

A-1 = A-lO (cosh(a 2 - b2)l/2t + (a 2 _ b2)X/2 sinh(a 2 - b2)l/2t). 

The unbounded growth in the momentum A-1 indicates that v(r, t) increases near the axis. In this case, the 
angular momentum (per unit length) A2 --* 0, and the energy (per unit length) is bounded: 

oo oo 

/ l r ( h 2 + v 2 ) d r < ~  a J 2 2  a -  b rv dr. 
0 0 

For nonzero viscosity this growth ceases, and v --* 0, as can be proved rigorously for b = 0. For b # 0, 
we were unable to obtain a rigorous proof. 

For b = a, the general solution of system (41) and (42) has the form (v = v,,, = 0) 

v = F(r) + f(~) + ~f'(~), h = F(r) + f(~) - ~f'(~). (50) 

Here ~ = rexp(2at)  and F and f are arbitrary functions. In this case, as t ---* cr we have An --+ Bn 
(n + 2)Ao,J[2(n + 1)] for n />  0, and A-1 = A_loat, and the energy is bounded, which can be shown directly 
from (50). 

For b > a (a strong poloidal magnetic field), all An for n /> 1 increase with t ime (including the angular 
momentum A2). For n = 0, the azimuthal rate A0 and the azimuthal magnetic-field flux B0 remain bounded. 
The time dependence of the momenta  A-1 and B-1 for which g-1 = i(b 2 - a2) 1/2 has the form 

a 

A-1 = A-10(cos(b 2 -  a2)l/2t + (b 2 _ a2)1/2 sin(b 2 -  a2)l/2t), 

bA-lo 
B-1 - (b 2 _ a2)1/2 sin(b 2 - a2)l/2t, 

which indicates that the resulting flow is oscillating, at least, near the symmetry axis. 
Relations (46), and, hence, (47) and (48), remain valid for n = 2 for a viscous fluid with finite 

conductivity. Thus, in this case, swirling occurs for b > a. However, as for the plane analog, the growth 
in the angular momentum is related to the angular-momentum flux through the Maxwell stress tensor of the 
magnetic field at infinity, and the swirling is not spontaneous. 

The above example, although somewhat artificial, shows that the formulation of problems of 
spontaneous swirling in magnetohydrodynamic flows should ensure control (absence) of not only the 
kinematical flux of the mechanical angular momentum, but also of the angular momentum flux related to the 
stress tensor of the electromagnetic field flowing from infinity into the flow region. 
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